
Simulating Loader for Mach-O Binary Obfuscation and Hooking

Anh Khoa Nguyen
khoana@verichains.io

Verichains

Thien Nhan Nguyen
Verichains

Abstract
Mach-O binary is prevalent in Apple devices; despite its
widespread use, studies on Mach-O modifications are lim-
ited and usually with minimal changes here and there. We
have observed that in PE and ELF binaries, when enhanced
modifications are made, they can be utilized for complex tech-
niques such as obfuscation or hooking. This has prompted
us to explore the Mach-O binary format in order to develop
innovative modification techniques.
In this paper, we introduce a novel method for modifying
Mach-O by simulation of the loader. Rather than allowing
the loader to perform all necessary initialization, our method
delegates this task to our simulated loader. This method has
led us to develop two new techniques that can be applied
to the obfuscation and hooking of Mach-O binaries. Earlier
attempts at obfuscating Mach-O binaries merely edit triv-
ial data which can be reconstructed, whereas our technique
completely removes all dynamic symbols that make calls to li-
braries, including references to imported Objective-C classes,
leaving them undefined. Our hooking technique has demon-
strated its ability not only to hijack dynamic symbols, but also
Objective-C class methods, whether they are contained within
the binary or imported.

1 Introduction

Binary modification has emerged as a salient subject in the
domains of Windows and Linux, with multiple obfuscation
and hooking methodologies being developed for PE and ELF
binaries. Despite Apple’s prominence as a leading Operating
System, boasting its unique Mach-O binary format, the schol-
arly exploration of binary modification within this format
remains conspicuously sparse. Specifically, a mere two ob-
fuscation schemes have been designed for Mach-O binaries,
both of which are notably rudimentary. In contrast, the PE
and ELF binaries are equipped with an array of obfuscation
schemes. Intriguingly, the structure of Mach-O bears a strik-
ing resemblance to that of ELF, which raises questions as to

why more research has not been directed towards the Mach-O
binary. In parallel, hooking techniques have been extensively
studied for PE and ELF binaries, with popular methods in-
cluding IAT hooking and PLT/GOT hooking. However, the
potential applicability of these techniques to Mach-O remains
undocumented.
Our approach to the topic of Mach-O binaries is centered on
understanding the binary format and the loading procedure
performed by the loader dyld and the Objective-C runtime
objc4. The loader employs a large array of metadata stored
in the _LINK_EDIT, which we believe can be eliminated and
processed using a simulated loader. Following this line of
thinking, we have constructed a simulated loader that is capa-
ble of invoking constructors, initializing nonlazy Objective-C
classes, and symbolizing dynamic symbols, encompassing
both pure C symbols and imported Objective-C class refer-
ences.
The use of a simulated loader enables the creation of an ad-
vanced use case for obfuscation and hooking. The obfuscation
scheme is completed when additional data is extracted from
the binary. The resulting binary has undefined external sym-
bols as they have been relocated and stored in an encrypted
manner within our simulated loader. The simulated loader
can also function as a hooking tool by redirecting external
symbols to a tailored hooked variant of the symbol.
In this paper, we illustrate the implementation of a simulated
loader for the Mach-O binary, along with the obfuscation strat-
egy and the hooking method developed. The methods we will
discuss are adaptable to any compiled binaries, particularly
those based on Objective-C, the prevalent language runtime
on Apple devices.
The remainder of this paper is structured as follows. Section
2 offers an in-depth exploration of the background, encom-
passing obfuscation techniques, binary analysis, an overview
of Apple’s loader, and, more specifically, the Mach-O binary
format. Before we outline our methodology, we introduce
some previous techniques for Mach-O obfuscation in Sec-
tion 3. In Section 4, we provide a detailed implementation
to implement a simulation of the Mach-O loader as a sepa-

1

mailto:khoana@verichains.io

rated dynamic library. These steps include binary modifica-
tions and the restoration of essential information during run-
time. We also address the nuances of obfuscating Objective-
C-compiled binaries and introduce additional information
that can be leveraged to enhance obfuscation, along with any
associated drawbacks. After that, we detail the obfuscation
scheme in Section 5 and the hooking method in Section 6.2,
both based on the simulated loader strategy. Section 7 is dedi-
cated to the evaluation of our obfuscation method, conducted
on GNU Coreutils. This section also discusses limitations and
how strong the obfuscation scheme based on this is. Section 8
discusses potential future works that can be extended. Finally,
in Section 9, we offer our concluding remarks.

2 Background

2.1 Apple’s loader dyld
The Apple loader [1], known as dyld, is responsible for the
execution of programs, including the loading of the binary
and its associated libraries, the resolution of dynamic symbols,
the rebasing of offsets, and the final execution of the binary.
Due to the shared cache mechanism [7] introduced in iOS
13.5 or macOS 11.0, important libraries, including the system
(often referred to as libSystem [2]), C++, Objective-C Run-
time [3], Foundation, and Swift Runtime libraries, are loaded
into memory and are only available there. In older versions
of Apple’s operating systems, direct file system access to the
dyld loader was possible. However, in recent versions, such
access is no longer feasible as dyld, and these libraries are
now exclusively in memory since the system boots.

2.2 Mach-O binary format
The Mach-O binary format is inherently complex. To gain
a comprehensive understanding of the techniques described
in this paper, it is imperative that we closely examine this
binary format. It is crucial to emphasize that our obfuscation
methodology does not pertain to the obfuscation of the binary
code itself. Instead, our focus lies on the obfuscation of vital
information stored within the binary file. Therefore, a thor-
ough understanding of how the Mach-O binary format stores
this information is important in understanding our approach.

2.2.1 Basic Mach-O structure

The Mach-O binary format can be comprehensively examined
from multiple perspectives. One fundamental approach is to
dissect it on the basis of its encoding of binary data. In this
sense, a Mach-O binary comprises a header, a sequence of
load commands, and subsequent raw binary data. The header
provides essential information about the binary, encompassing
its type (whether executable or library), endianness, architec-
ture, and the number of load commands. Load commands, cru-

cial for the loader’s runtime operations, facilitate the mapping
of the binary into memory and the execution of preliminary
tasks. Some load commands reference the raw binary data.
Alternatively, another perspective to comprehend the Mach-
O binary is through its segmentation. Typically, the binary
consists of three key segments: _TEXT contains assembly
instructions; _DATA and _DATA_CONST store static binary data;
_LINK_EDIT segment is dedicated to loader instructions.

2.2.2 Dynamic library load chain

In most cases, programs cannot function as standalone entities
but instead rely on dynamic libraries. These libraries are regis-
tered in the header of Mach-O binaries using commands such
as LC_DYLIB (or similar equivalents). These commands es-
tablish a load chain, organized in a specific order. The loader
dynamically loads libraries that are registered in the load
chain.
The loader is responsible for locating and loading libraries
into memory. These libraries fall into different categories:
system installed libraries and user-provided libraries are iden-
tified by their names within the LC_DYLIB load command.
These names can represent full or relative paths. Full paths are
self-explanatory, whereas relative paths can be more intricate,
involving file system-relative paths or the use of rpath vari-
ables. There are three rpath variables: @executable_path,
@loader_path, and @rpath. They serve as references to li-
braries, with @executable_path pointing to the location of
the executable, @loader_path indicating the loader’s loca-
tion, and @rpath being defined through a series of LC_RPATH
commands. Libraries using the @rpath reference will be iter-
atively replaced through each item in the LC_RPATH chain to
search for the corresponding file on the disk.

2.2.3 Dynamic Symbols

Functions from external libraries are often used as a means
of code reuse. When a binary does not statically link with
a library, it must specify the required library and functions
statically in its binary format and will be resolved at runtime.
This approach to code reuse is known as dynamic loading.
In Mach-O binaries, all the information necessary for dy-
namic loading, usually referred to as import table, is spread
across various segments, including _LINK_EDIT, _DATA, and
_DATA_CONST. The import table in Mach-O has undergone
several updates over time. The original version of the import
table used a custom bytecode chain, while the updated version
introduced in iOS 14 employs fixups chains.
During load time, the loader of a Mach-O binary reads the im-
port table, searches for the addresses of symbols, and rewrites
them in memory for reference by the executable or library
code. To facilitate this functionality, the binary allocates space
for a list of stubs. These stubs serve as templates and serve
as branching targets. When these stubs are resolved by the

2

loader, the target functions become known, allowing calls to
dynamic library functions as shown in Table 1.

2.2.4 Rebase

In binary files, references (pointers) to other data are often
stored as file offsets. During execution, when the binary is
loaded into memory at a specific address range, these refer-
ences need to be adjusted from relative (offset in the file) to
absolute addresses. This process is called rebasing, where
pointers are rebased from 0 to the loaded address. Readers
might be familiar with Position-Independent Code, and the
rebase is the design for this mechanism in Mach-O binaries.
While there is no specific term for the list of pointers to be
rebased at runtime, for the sake of brevity, we can refer to
these as the "rebase table".

2.2.5 Bytecode chain

In the original design of Mach-O binaries, the import ta-
ble and the rebase table were implemented using bytecode
chains. These chains embody the basic form of a state
machine instruction. This bytecode has a special opcode
BIND_OPCODE_DO_BIND to determine where a state defines a
symbol, or opcodes with prefix REBASE_OPCODE_DO_REBASE
to define a rebase pointer. This approach optimizes storage
by specifying only changes between multiple items.
In this design, there are four different chains, each serving
distinct purposes: Rebase, Non-Lazy, Lazy, and Weak. The
Rebase chain is the rebase table. Non-Lazy, Lazy, and Weak
chains are used for dynamic symbol resolution, but operate at
different stages of the binary execution. Non-Lazy symbols
must be resolved during the load time, while lazy symbols
can be resolved when first called. Weak symbols are used to
avoid collision in the symbol name.
Lazy symbols are resolved through an indirect call to the
loader, which subsequently reads the bytecode chain to ex-
tract a single symbol and writes back the function address.
This process is executed via a procedure in dyld known as
dyld_stub_binder. An overview of this type of resolution
is given in Table 2.

2.2.6 Fixups chains

In later versions of the Mach-O binary format, after iOS 15 or
macOS 14, performance optimization led to the deprecation
of bytecode chains in favor of fixups chains. Unlike bytecode
chains, fixups chains do not separate between rebasing and dy-
namic symbol resolution; instead, they are processed together.
This approach significantly improves overall performance by
reducing the number of runs through the binary.
In this design, there exist sequences of contiguous 8-byte
values. Each 8-byte unit incorporates a single bit to signify
whether it is intended to serve as a rebase pointer or to repre-
sent a dynamic symbol. For rebase pointers, the unused bits

are repurposed to specify the readdressing mechanism, while
dynamic symbols utilize the remaining bits to encode both
the index within the library list and the index within the string
table corresponding to the symbol name. The 8-byte values
are modified in place when rebased or resolved during load
time.
Due to the deprecation of 32-bit hardware by Apple, each
value in fixups chains is 8 bytes, which is the same size as a
pointer in a 64-bit system.

2.2.7 Export trie

In Mach-O binaries, dynamic symbols that are meant to be
discovered during dynamic symbol resolution are stored in
an export trie. This data structure resembles a prefix trie and
derives its name from this resemblance. The essential char-
acteristic of an export trie is that all items share a common
root, which requires that all symbols be prefixed with an un-
derscore.

2.2.8 Fat binary

A fat binary is a common type of executable binary used in
Apple devices. It functions as a wrapper for a multiarchitec-
ture executable containing different architectures of Mach-O
binaries of the same program. When submitting applications
to Apple, a fat binary is typically required. However, when
a user downloads the application to a specific device, only
the Mach-O binary with the corresponding architecture for
that device is actually downloaded and used. This approach
ensures compatibility with various Apple devices while opti-
mizing the download size for each specific target.

3 Related Works

In this section, we survey the existing open-source solutions
for Mach-O binary obfuscation, focusing specifically on meth-
ods that take a binary as input and produce an obfuscated
output. We exclude approaches that involve decompilation
followed by obfuscation on the decompiled code from our
consideration; packers are also excluded because it is a differ-
ent kind of obfuscation. This enumeration aims to provide an
overview of the current landscape of Mach-O binary obfusca-
tion techniques that adhere to the specified criteria.
We first go through a list of common obfuscation techniques
on Mach-O binaries; these techniques are well known and
often suggested, as well as supported, by many. These tech-
niques often involve the removal of exported symbols. The ex-
ported symbols are not mandatory in the main executable be-
cause the binary entry point is accessible through the LC_MAIN
load command and other symbols are not referenced by other
libraries. Removing the list of exported symbols (and some-
times public symbols) can be easily performed through com-

3

piler / linker argument invocation or directly remove the asso-
ciated load commands, LC_SYMTAB for instance.
Unused sections and data within the binary are also targeted
for removal in certain obfuscation methods. This process is
relatively straightforward, as these portions of the program
are deemed unnecessary for execution.
Numerous obfuscation methods focus on renaming Objective-
C symbols, as evident in tools like MachObfuscator [4] and
ios-class-guard [14]. The underlying rationale is straightfor-
ward: Renaming Objective-C class names and methods to
strings of equal length often employs random or generated
names. This intentional obfuscation adds complexity for re-
verse engineers, which requires more effort to decipher the
meaning of classes without the aid of descriptive names.
The Poor Man’s Obfuscator [18] employs a more intricate
obfuscation scheme. In this approach, various load com-
mands are altered to feed incorrect information to binary
analysis platforms. Obfuscation options, called transforma-
tions, include actions such as randomizing the names of ex-
ported symbols, redirecting the addresses of exported sym-
bols to different locations, adjusting the offsets and sizes
of sections in load commands, and modifying entries in the
LC_FUNCTION_START table. Upon scrutiny, this obfuscation
scheme introduces moderate disruptions that challenge many
binary analysis platforms.

4 Loader Simulation

In this section, we present an in-depth exploration of our
loader simulation technique for Mach-O binaries. This con-
cept will be used for the obfuscation and hooking techniques
described in later sections.

4.1 Design Overview

The primary objective is to manipulate the load-time data em-
bedded within the binary. By modifying these critical pieces
of information, we render the binary incapable of successful
loading into memory. These information elements frequently
serve as crucial input for static analysis tools such as IDA or
Ghidra. The removal of this information creates an environ-
ment of partial knowledge, making it harder for analysts to
reverse the binary. A similar obfuscation concept was intro-
duced in a previous work for PE binaries [8].
We introduce a control-flow intervention between the binary
loading process and its execution. This is necessary because
the loader cannot perform a full load of the binary due to
missing information that results in a crash during execution.
To keep the binary working as normal, the intervened code
performs a part of the loader’s workflow using the extracted
information. This process is later termed restoration logic.
This intervening control flow is inserted through an external
library or is injected, as described in [11].

In this paper, we use an external library to perform restoration
logic. Information needed for the loading process of the binary
is extracted, which is then included in the external library. The
binary is also added with a load command to load our external
library.
As an optional measure, the extracted data can undergo static
encryption, with decryption occurring at load time when our
restoration logic is executed. Note that our restoration logic
may rely on functions from the loader, potentially exposing
the runtime restoration process. To enhance the resilience of
this restoration method, we offer a mechanism to conceal the
invocation of these functions by jumping to the direct address.

4.2 Extracting information

To simulate the loader, the information used by the loader
is considered for extraction. This information is typically
stored in _LINK_EDIT segment. Commands that use these seg-
ments can be removed if they are not necessary. Our obfusca-
tion chose to extract the information in LC_DYLD_INFO_ONLY,
LC_CHAINED_FIXUPS. In addition, we also extract the list of
constructor function pointers; these are often called before
the binary’s main procedure.
LC_DYLD_INFO_ONLY load command provides informa-
tion in the form of bytecode chains. If the binary has this load
command, we eliminate the non-lazy, lazy and weak byte-
code chains by rewrite the data so that the loader would skip
through. This is accomplished by configuring the bytecode
chain size to a value of 0 within the load command and sub-
sequently overwriting the bytecode chain section within the
_LINK_EDIT segment with random values.
LC_CHAINED_FIXUPS load command offers a sequence
of fixups chains. By traversing these chains, we can extract
all the imported symbols. These symbols are typically stored
as indices pointing to an indexed store of strings, where each
index corresponds to the symbol’s name and the hosting li-
brary. To exclude these symbols from the loading process,
we undertake a two-fold process. First, we rewrite each chain
dynamic symbol values to a rebase values. Subsequently, we
completely eliminate the string table that holds the symbol
names.
In both situations, the loader should still be able to process
the binary without crashing. If the table is empty, for byte-
code chains, the loader can skip reading the dynamic symbols.
Similarly, in the case of chained fixups, they can be resolved
as a rebase value. Thus, the binary can be loaded into mem-
ory successfully, although with unresolved dynamic symbols
referencing the wrong address.
Constructor functions refer to functions that are invoked
by the loader once all images have been loaded into memory.
These functions are called sequentially as part of the initial-
ization process. To remove these functions, several methods
are available. One straightforward approach is to modify the
LC_SECTION flag to exclude the section from being listed

4

as constructor pointers. Additionally, pointers are typically
checked to ensure that they reside within the binary’s memory
region. When adjusting these pointers to point outside the
memory region, the loader will disregard them, effectively
achieving removal of these functions.

4.3 Simulate Loader
During runtime, extracted information is retrieved and used
to complete the loading of the binary. We use a constructor
function that is scheduled to run (by dyld) before the main
executable. Using the entire set of parameters provided by the
loader, we are able to determine the base address of the main
executable that has been loaded into memory, as depicted in
Listing 3.
Having obtained the base address of the main executable,
we can proceed with the restoration process by simulating
the loader’s actions. For each piece of extracted information,
we execute the corresponding restoration procedure in accor-
dance with its specific logic.
The load commands LC_DYLD_INFO_ONLY and
LC_CHAINED_FIXUPS have different representations, but
both contain a collection of dynamic symbols. Each symbol
in the collection includes the symbol name, the exporting
library, and the address where the function pointer is stored.
By extracting data from these load commands, we generate
a dynamic symbol list. During runtime, we iterate through
this list to locate the symbol and update the function pointer.
The symbol can be easily found using dlsym. Writing to
the function pointer requires that the address be writable,
as described in Listing 1, because the loader locks the
__DATA_CONST segment as read-only after it finishes and our
restoration logic performs after the loading process.

#include <mach/mach.h>
vm_protect(mach_task_self(), offset, size, 0,

VM_PROT_READ | VM_PROT_WRITE);

Listing 1: Modify the virtual memory range from offset to
offset+size to Read-Write.

Constructor functions can be invoked directly. We can cal-
culate the function addresses and invoke them with parame-
ters passed to our constructor because the loader consistently
passes the same arguments to all constructors during initial-
ization, enabling us to call these functions manually without
reliance on the loader.

4.4 Objective-C compiled binary
The previously described restoration logic is highly effective
when applied to binaries compiled from C or C++. However,
within the Apple ecosystem, Objective-C is a predominant lan-
guage for application development. Objective-C is a unique

component of Apple’s technology stack and is seamlessly
integrated into the loading process of executables through
custom passes. Consequently, addressing the challenges asso-
ciated with Objective-C compiled binaries requires a distinct
approach. Before diving into these nuances, it is essential to
clarify the synergy between Objective-C and the dyld loader.

4.4.1 Relationship with dyld

The Objective-C runtime is consistently loaded into memory
and automatically mapped to the same virtual memory space
as the executable. Within this runtime, a collection of hooks is
made available and these hooks are strategically used by the
dyld at various stages of the binary loading and unloading
processes. During the initialization of the Objective-C runtime
via libSystem, an array of callbacks is supplied to dyld.
By the callback _dyld_objc_callbacks_v1, the Objective-
C runtime registers three functions at different stages of the
binary loading and unloading processes: when the binary
is mapped into memory, when the binary is invoked to call
constructors, and when the binary is unmapped from memory.

4.4.2 Objective-C data in binary

The binaries compiled from Objective-C include sections
identified by the prefix _objc. These sections are integral to
the functioning of the Objective-C runtime, facilitating the
initialization of Objective-C classes and selectors. In sum-
mary, Objective-C runtime performs the initialization of class
objects and selectors when the binary is mapped to memory,
and Objective-C +load methods are called during constructor
invocation.
Objective-C binaries contain class definitions represented as
data. These classes are defined using two special pointers: isa
and superclass. The isa represents the metaclass, while the
superclass represents the parent class. Each class has its
own metaclass, and the superclass pointer points to the
class data of the parent class. It is important to note that the
superclass pointer can never be null because all classes in
Objective-C must inherit from NSObject. Further details of
Objective-C data stored in binary is discussed in Section 6.2.

4.4.3 Simulation for Objective-C based binaries

Dynamic symbols in Objective-C, including classes that re-
fer to other classes in different libraries, are also considered
dynamic symbols. Our simulated loader eliminates these sym-
bols. However, the Objective-C runtime workflow requires the
loading of these classes. Furthermore, the Foundation library
must be initialized before it can be referenced. The current
restoration logic is implemented prior to any Objective-C
runtime and Foundation initialization, which would lead to
crashes. To address this issue, we incorporate a shellcode
snippet to redirect the execution of the main function until all
Objective-C classes have been resolved.

5

We prevent Objective-C runtime from executing its class load-
ing mechanism by modifying the names of two sections in the
binary: __objc_classlist and __objc_nlclslist. We in-
sert a shellcode before the start of the _TEXT segment and
edit the LC_MAIN load command to points to the shellcode
location.
The shellcode is created to be compact, with the primary
objective of executing a function that resolves all Objective-
C classes, referred to as restore_objc, and jumps to the
main function after it finishes. Figure 3 illustrates components
of dyld and objc4 to be simulated.
Objective-C logic for processing class data is
done through private methods like readClass,
realizeClassWithoutSwift, remapClass, to name a
few. These symbols cannot be found in the export trie.
However, they are available in the LC_SYMTAB directives. We
can search for these symbol addresses and rebuild the logic
as described in _read_images1 protocol of the Objective-C
runtime.

In iOS environment, these symbols are not declared in
LC_SYMTAB. However, we can try to locate these symbols
indirectly through public symbols that invoke them.

The process of locating the restore_objc procedure can be
complex. To keep the shellcode as compact as possible, we
have opted to store the procedure’s address in a location that
can be easily calculated. Specifically, we have chosen the end
of the _DATA segment for this purpose. At this location, the
first pointer value immediately following the end of the seg-
ment represents the address of the restore_objc procedure,
while the second pointer value indicates the address of the
binary’s main function. These pointer values are written after
the restoration logic. We visualize the process in Figure 4.
In practical situations, the space available for the shellcode be-
fore the _TEXT segment and the number of pointer values after
the _DATA segment may be limited. Therefore, it is important
to keep the shellcode as concise as possible and reduce the
number of required pointer values. Generally, there should be
enough space available since these segments are page-aligned,
unless the code and data sizes are exact multiples of the page
size, which would result in no extra space. If the available
space is insufficient, it is recommended to use [11] or similar
methods to add additional code in the binary for the purpose
of restoration logic.

5 Obfuscation

Binary executable files encapsulate assembly instructions,
program data, and essential execution information for the
operating system to execute. Binary obfuscation aims to elim-
inate critical information that reverse engineers rely on for

1https://github.com/apple-oss-distributions/objc4/blob/
objc4-912.3/runtime/objc-runtime-new.mm#L3927

their analysis. Nevertheless, it is essential to note that binary
obfuscation is inherently platform-specific. The predominant
focus has been on Windows binaries (usually commercial-
ized) [8, 13, 17] and Linux binaries [6, 9, 10, 15, 18], while
Apple binaries have received comparatively limited attention.
Some previous work [4, 14, 18] has proposed modest adjust-
ments to debugging information within binaries, which helps
to impede the analysis capabilities of reverse engineering
platforms.
Another widely recognized form of binary obfuscation is
known as “packing" [12]. This method involves compress-
ing or encrypting the binary code and then unpacking it at
runtime. However, it is important to note that because the
code is unpacked during runtime, it remains susceptible to
memory extraction, which could potentially allow an attacker
to recover the original code.
We have created a method of obfuscation that relies on the
simulated loader described above. Beyond the extraction of
dynamic symbols, it is possible to eliminate further informa-
tion as outlined in 5.1. To enhance security, we recommend
the encryption of the symbol table within the simulated loader.
Implementing the additional procedures referred to in Ap-
pendix A results in obfuscation of the simulated loader itself,
providing an additional level of protection.

5.1 Removing redundant information

Some data are automatically generated during the compi-
lation process by the compiler and the linker. This infor-
mation serves no inherent purpose during runtime and, as
such, can be removed. Examples of such debugging-related
data are defined in commands like LC_SYMTAB, LC_DYSYMTAB,
LC_FUNCTION_STARTS, and LC_DATA_IN_CODE, among oth-
ers. Their exclusion from the binary file does not compromise
its functionality during execution, but rather streamlines the
binary by eliminating superfluous debugging-related content.
The complete removal of this information effectively prevents
a basic analysis that relies on these debug symbols to make
sense of the binary program.
Depending on the nature of the load command and its func-
tionality, it may be considered for removal. Load commands
that fall under the category of informative or debugging data
are typically candidates for removal, provided that their ab-
sence does not disrupt the overall load process or while run-
ning.
Our technique also allows for the removal of load commands
related to system libraries. These libraries are always present
in memory and can be accessed by any process. The inclusion
of these load commands in the binary is only necessary for
referencing dynamic symbols. However, since our obfuscation
method extracts all dynamic symbols from the binary, the
references to system libraries can also be eliminated.

6

https://github.com/apple-oss-distributions/objc4/blob/objc4-912.3/runtime/objc-runtime-new.mm#L3927
https://github.com/apple-oss-distributions/objc4/blob/objc4-912.3/runtime/objc-runtime-new.mm#L3927

6 Hooking

Hooking is a prominent topic in the security field and has
evolved with tools such as Frida [16] and Fishhook [5]. Frida
allows developers to inject hooks at arbitrary addresses, Fish-
hook allows developers to replace the body of a function at
runtime after some setup procedures. However, the hooking
method we have described here is distinct from Frida’s ap-
proach, rather it is quite similar to Fishhook but on a binary
level. Although we do not have the flexibility to hook arbi-
trary addresses, our method enables us to modify function
invocations, directing them to our custom functions through
dynamic symbol resolution. This approach is particularly valu-
able when we need to intercept and modify system API calls,
such as file opening (e.g., fopen), or when we want to disable
certain functions from being called altogether.

6.1 C API hooking
As explained in Section 4, our obfuscation technique resolves
dynamic symbols at runtime. This provides an opportunity
to intercept the C API. The concept is straightforward: The
symbol that needs to be intercepted is manually resolved, and
the function pointer is then overwritten by our intercepted
function.
The concept is comparable to Fishhook and dyld
interposing, as it involves altering the API function pointer
to a different function. However, unlike Fishhook, we do not
need to have access to the program’s source code. Addition-
ally, unlike dyld interposing, we manually install the hook
without relying on the dyld API.

6.2 Objective-C class method hooking
As stated in Section 4.4.2, the metadata for each class is stored
statically in the binary. These metadata contain references to
the metaclass, the parent class, and a struct called class_ro.
When loading the class, the Objective-C runtime reads this
struct to initialize the class prototype. The prototype includes
references to the class name, the method list, the property list,
the ivars, and other information. Figure 1 illustrates how the
data references are stored in an Objective-C binary. Hook-
ing can be achieved through manually editing the data of
Objective-C binary.
We thoroughly examine the class structure within the binary.
The class data are kept in a section named _objc_data. Sec-
tions _objc_classlist and _objc_classref hold pointers
to this class data list. The class list is used by the Objective-
C runtime to initialize classes in memory, while the class
reference list is utilized in the binary (e.g., to create a class
instance). The entries in the class list are of type class_t
and contain three special pointers: isa (pronounced "is a")
points to the metaclass, superclass points to the direct parent
class, and ro points to internal class data (such as methods and

attributes). ro points to a struct of type class_ro_t inside
_objc_const section. This struct contains the pointers to a
list of methods for a class. Each method list entry is a tuple of
three values, the selector pointer, the selector name (method’s
name), and the implementation pointer (function pointer off-
set). This list can be encoded in 4 different types (big, small,
bigSigned, bigStripped)2; regardless, the information they
convey is the same.
From the overall structure detailed in the previous paragraph,
we can deduce many hooking mechanisms. We enumerate
the four straightforward approaches below and implemented
two of them, first and third. All hooking mechanisms must
occur prior to loading the class in memory (processed by
Objective-C runtime).

1. Modifying the implementation pointer in method list.

This method is the most straightforward, enabling the
hooking of a specific function by altering its reference
to point to a different function.

2. Create a method list and replace them in class_ro_t.

The method list can be substituted with a different (man-
ually crafted) list. References to the function’s imple-
mentation are modified to use hooking functions. The
name and type of selectors should remain unchanged.

3. Redirect pointers in _objc_classref section.

For ease of use, we can define a new class containing
the methods we intend to hook and then update the
_objc_classref pointer to reference this new class. By
leveraging the superclass property, we set the original
hooked class as the superclass. This makes the newly cre-
ated class a subclass of the hooked class, causing hooked
methods to be invoked by default while unhooked meth-
ods are passed through to the superclass. Hooked meth-
ods can also invoke their unhooked versions by using
the superclass call [super method:].

This applies to classes that are imported from other li-
braries. All imported classes are given as pointers within
_objc_classref, with their symbols being resolved by
the loader.

4. Create a class_ro_t struct and replace them in
_objc_data.

The class data are accessed via the ro pointer, allowing
us to generate a personalized instance of class_ro_t
and replace the ro pointer.

7 Evaluation

The Mach-O modification methods and techniques for ob-
fuscation and hooking that we propose are highly intricate.

2https://github.com/apple-oss-distributions/objc4/blob/
objc4-912.3/runtime/objc-runtime-new.h#L963

7

https://github.com/apple-oss-distributions/objc4/blob/objc4-912.3/runtime/objc-runtime-new.h#L963
https://github.com/apple-oss-distributions/objc4/blob/objc4-912.3/runtime/objc-runtime-new.h#L963

Figure 1: Objective-C class metadata stored in binary. This figure offers a comprehensive structural overview of basic Objective-C
data, though it does not encompass notions like metaclass or class properties.

Nevertheless, we anticipate that the modified binary will re-
main unchanged before and after obfuscation; or the behavior
of the hooked functions will be modified when hooking is
implemented. Other elements to be assessed include perfor-
mance, particularly the startup delay and the increase in size.
In the scenario of obfuscation, we foresee that all symbols
will be removed from the executable.
During our assessment, it became apparent that our study is a
pioneer in performing an exact evaluation of Mach-O binary
modifications. Consequently, no pre-existing sample set has
been selected for bench-marking. We decided to select GNU
Coreutils as our suite for bench-marking.

7.1 Coreutils bench-mark
We performed some benchmark tests on the GNU
Coreutils suite, a collection of command-line tools that
are widely used and can be found in nearly every
Linux-based system, including Apple devices. During
the execution of the obfuscation scheme experiments,
our imlementation failed to resolve the symbols of
/usr/local/opt/gettext/lib/libintl.8.dylib. This
library is loaded using a different path and not as indicated3.
In order to proceed with the experiment, we have opted to
keep these symbols and let them be resolved by the loader.

3To locate libraries in memory, use LC_ID_DYLIB to identify the library
name, not the path

We evaluated the restoration time for imported symbols. This
time calculation is based on our current implementation,
which can be further optimized. The results are presented
in Figure 2. The variation in time measured for the same
number of imports can be attributed to the search order. Our
implementation does not optimize the search by caching pre-
viously found occurrences or prefixes. Moreover, each search
starts anew, even though basic hashing is employed to accel-
erate the search for the library export trie in a (unoptimized)
hash table implemented in C.
In the process of obfuscation, we conducted a compre-
hensive enumeration of all symbols present in the bi-
naries following the obfuscation procedure. All obfus-
cated binaries were removed of their original symbols,
with the sole exception being symbols originating from
/usr/local/opt/gettext/lib/libintl.8.dylib, the ra-
tionale of which has previously been explained. Assuming
the process is executed with precision, all symbols should
be eliminated, resulting in a binary that is entirely stripped,
including imported symbols.
We conducted tests on an Intel Mac 14 with GNU Coreutils
version 9.1 (commit ca22b9e). Of 105 utilities, 2 failed to
build, specifically make-prime-list and extract-magic. These
commands are used infrequently today, so we proceeded with
testing regardless. We anticipated that the remaining 103
utilities would be successfully obfuscated and functional. To
our surprise, checksum-related utilities (md5sum, sha1sum,

8

sha224sum, sha256sum, sha384sum, sha512sum) triggered a
SEGFAULT signal when invoking set_locale at the start of
the program. Upon investigation, we found several unknown
factors that contributed to this issue, including the handling of
libintl and the discrepancy between the uppercase symbols in
the search list and the lowercase names in the library. Despite
this, the other 97 utilities performed correctly, giving more
than 90% of the utilities in Coreutils that are obfuscatable.
As a proof of concept, the overall results have demonstrated
viability, allowing us to conclude the evaluation with a few
considerations.

Figure 2: Restoration time for binaries in Coreutils

7.2 iOS Viability
We successfully obfuscated a basic iOS application created
with Xcode using only Objective-C. The general method
stayed the same. However, certain Objective-C APIs are
not accessible via the symtab, necessitating manual symbol
searches. Despite this, the iOS application was obfuscated,
with imported symbols eliminated, and was successfully re-
stored during runtime and running normally. In Figure 5, we
compare side by side the before and after obfuscation of the
main function.

7.3 Reversing and Rebuilding symbol tables
A crucial element of obfuscation is the capacity to decon-
struct the obfuscated variant. As outlined earlier, our method
involved transferring the dynamic symbol table into our emu-
lated loader, which made the calls to external libraries indeter-
minate. The program logic can be ordinarily reversed, as there
are no attempts to modify the control flow. If the attackers
aim to comprehend the segment of code where calls are made
to external libraries, they must either retrieve the symbol table
or determine the symbol invocation during execution.
In an environment without protection, the symbol table can
be retrieved from the emulated loader. However, this table is

not identical to the bytecode chain or fixups chain. Attackers
need to understand how to rebuild the table and reapply it
to the binary for automatic analysis using analysis tools, or
they must manually decode each symbol and its address and
create a lookup table. Attackers may also connect a debugger
to monitor invocations of symbols from external libraries,
but they must manually track all symbols. Memory extraction
strategies may be effective, but the addresses obtained are only
valid for one session, unless the symbol is part of the system
libraries that are always loaded in memory. Attackers must
map these addresses to their library and symbol name, then
reconstruct the bytecode chain or fixups chain, and reapply
them to the binary. In a highly protected environment, where
the symbol table is encrypted and runtime application self-
protection (RASP) is in place, recovering the symbol table
would be more challenging.

7.4 Limitations

Our method has several drawbacks. One major limitation is
its unsuitability for statically linked binaries. Most of the el-
ements that our simulated loader aims to load are dynamic
symbols, which are missing in statically linked binaries. How-
ever, in modern times, dynamically linked binaries are almost
universally used, except in some restricted environments like
those in IoT devices.
Another constraint is the presumptions of the unutilized space
for shellcode, placed between the header and _TEXT segment,
and 2 pointers, positioned after _DATA segment. Despite hav-
ing a compact shellcode, there are instances where the shell-
code cannot be fully inserted. To avoid this issue, we also
eliminate the load commands for libraries (LC_DYLIB) that
belong to the system, such as libSystem and libc. These
commands are only incorporated as a library index when the
loader decodes the bytecode chain or the fixups chain. There-
fore, they can be discarded because the library has already
been loaded into memory.
Within the iOS setting, the symbol table (symtab) of the
Objective-C runtime library is devoid of its original con-
tent, making it impossible to locate the symbols readClass,
realizeClassWithoutSwift, remapClass within it. How-
ever, since these functions are invoked from other exported
symbols, we have the option to conduct a manual search for
these symbols by examining the assembly instructions and
pinpointing the calls that are likely to be these symbols, using
a heuristics source-assembly mapping.

8 Future Works

At present, we offer the simulated loader as an independent
dynamic library. This strategy may have some disadvantages,
as the binary is now required to be accompanied by our li-
brary. To address this, we can utilize the method described

9

in [11]. However, this study only details for the case of byte-
code chains and not for the fixups chain, as the fixups chain
is appended subsequently. Regardless, the concept remains
the same, we can incorporate our dynamic library into the
target binary to create a unified binary instead of having an
additional binary.

9 Conclusions

This paper introduces a method for modifying Mach-O bina-
ries, which involves the creation of a simulated loader that
can be expanded into either an obfuscation scheme or a hook-
ing technique. These two approaches can be readily applied
to dynamically linked Mach-O binaries and can be utilized
on binaries that contain or import Objective-C classes. The
impact on startup time is negligible and does not compromise
the overall performance of the targeted binary. Our method is
compatible with GNU Coreutils and is anticipated to function
with actual-world binaries.

References

[1] Apple. dyld. URL: https://opensource.apple.
com/source/dyld/.

[2] Apple. LibSystem. URL: https://opensource.
apple.com/source/Libsystem/.

[3] Apple. Objective-C Runtime. URL: https://
opensource.apple.com/source/objc4/.

[4] Kamil Borzym. MachObfuscator. URL: https://
github.com/kam800/MachObfuscator/.

[5] Facebook. fishhook. URL: https://github.com/
facebook/fishhook/.

[6] Vector 35 Inc. Binary Ninja. URL: https://binary.
ninja/.

[7] iPhoneDev. dyld shared cache. URL: https://
iphonedev.wiki/Dyld_shared_cache/.

[8] Yuhei Kawakoya, Eitaro Shioji, Yuto Otsuki, Makoto
Iwamura, and Takeshi Yada. Stealth loader: Trace-free
program loading for api obfuscation. In Research in At-
tacks, Intrusions, and Defenses: 20th International Sym-
posium, RAID 2017, Atlanta, GA, USA, September 18–
20, 2017, Proceedings, pages 217–237. Springer, 2017.

[9] Byoungyoung Lee, Yuna Kim, and Jong Kim. binob+ a
framework for potent and stealthy binary obfuscation. In
Proceedings of the 5th ACM Symposium on Information,
Computer and Communications Security, pages 271–
281, 2010.

[10] Cullen Linn and Saumya Debray. Obfuscation of exe-
cutable code to improve resistance to static disassem-
bly. In Proceedings of the 10th ACM conference on
Computer and communications security, pages 290–299,
2003.

[11] Do Minh Tuan Nguyen Anh Quynh. Redback: Ad-
vanced Static Binary Injection. URL: https://
groundx.io/redback/.

[12] Markus FXJ Oberhumer. Upx the ultimate packer for
executables. http://upx. sourceforge. net/, 2004.

[13] Oreans. Themida. URL: https://www.oreans.com/
Themida.php/.

[14] Polidea. ios-class-guard. URL: https://github.com/
Polidea/ios-class-guard/.

[15] Igor V Popov, Saumya K Debray, and Gregory R An-
drews. Binary obfuscation using signals. In USENIX
Security Symposium, pages 275–290, 2007.

[16] Ole André V. Ravnås. Frida. URL: https://frida.
re/.

[17] VMProtect Software. VMProtect. URL: https://
vmpsoft.com/vmprotect/overview/.

[18] Romain Thomas. The Poor Man’s
Obfuscator, 2022. URL: https://
www.romainthomas.fr/publication/
22-pst-the-poor-mans-obfuscator/.

A Obfuscate the simulated loader

A.1 Manual dlsym
The loader’s ability to resolve symbols into function addresses
using either LC_DYLD_INFO_ONLY or LC_CHAINED_FIXUPS
is well understood. Essentially, the loader maintains a list of
loaded libraries and utilizes the export trie of each library
to find public symbols based on their names. However, it is
important to note that in some cases, a function may be re-
exported from another library. In such situations, a recursive
search through libraries is necessary to locate the address of
the function. This recursive search ensures that the loader can
accurately resolve symbols even when they are re-exported
from different libraries. Occasionally, the re-exported symbol
may also be renamed, requiring subsequent searches to use
the new name.
When searching for symbols, it is crucial to consider that sym-
bols may refer to their hosting library using relative paths.
These relative paths can be expressed as either directory-
relative paths or through path variables such as @rpath,
@executable_path, or @loader_path. To ensure precise

10

https://opensource.apple.com/source/dyld/
https://opensource.apple.com/source/dyld/
https://opensource.apple.com/source/Libsystem/
https://opensource.apple.com/source/Libsystem/
https://opensource.apple.com/source/objc4/
https://opensource.apple.com/source/objc4/
https://github.com/kam800/MachObfuscator/
https://github.com/kam800/MachObfuscator/
https://github.com/facebook/fishhook/
https://github.com/facebook/fishhook/
https://binary.ninja/
https://binary.ninja/
https://iphonedev.wiki/Dyld_shared_cache/
https://iphonedev.wiki/Dyld_shared_cache/
https://groundx.io/redback/
https://groundx.io/redback/
https://www.oreans.com/Themida.php/
https://www.oreans.com/Themida.php/
https://github.com/Polidea/ios-class-guard/
https://github.com/Polidea/ios-class-guard/
https://frida.re/
https://frida.re/
https://vmpsoft.com/vmprotect/overview/
https://vmpsoft.com/vmprotect/overview/
https://www.romainthomas.fr/publication/22-pst-the-poor-mans-obfuscator/
https://www.romainthomas.fr/publication/22-pst-the-poor-mans-obfuscator/
https://www.romainthomas.fr/publication/22-pst-the-poor-mans-obfuscator/

resolution of these relative paths, it is recommended to con-
vert them into their respective full paths.
In order to obtain the list of loaded libraries in memory, a
series of three symbols can be used: _dyld_image_count,
_dyld_get_image_header, and _dyld_get_image_name.
By invoking these symbols sequentially, a comprehen-
sive list of loaded libraries can be compiled. This func-
tionality is demonstrated in Listing 2. More specifically,
_dyld_get_image_header provides the base address of the
library at a specific index, while _dyld_get_image_name
returns the full path of the library.

It should be noted that the file path obtained from
_dyld_get_image_name and the library name specified
in the ID_DYLIB load command may not match. dyld ex-
amines the LC_DYLIB load commands to determine which
library to load based on the ID_DYLIB value.

A.2 Obfuscate the simulation library
Our obfuscation method can also be applied to the restoration
library, which is also a Mach-O binary. During the obfuscation
process, all symbols are removed and need to be reinstated
during runtime. As the library is known to be executed first,
we can utilize this opportunity to resolve our library. However,
a drawback of this approach is the restricted usage of dynamic
symbols.
In order to address the issue of restricted usage of dynamic
symbols and ensure the restoration of the external library, a
possible solution is to use one dynamic symbol as a point
of reference and locate the header of the dynamic library
through this reference point. Following this rationale, we can
locate the header of the dyld library by selecting any dynamic
symbol of our preference, such as dyld_get_sdk_version.
Only dyld is needed because from dyld, we can resolve
remaining symbols through manual dlsym as specified in
Appendix A.1.
During the extraction phase, all symbols except for
dyld_get_sdk_version are removed. This specific symbol
is used to locate the dyld library in memory. The extracted
information is then written into a new section of the library
called _EXTRACTED for easy access. By obtaining a reference
to dyld, we can restore the function pointers of dynamic
symbols using the information stored in _EXTRACTED.
By executing the aforementioned procedures, both the obfus-
cation binary and the restoration library become completely
obfuscated. The obfuscated versions of these components
reveal very few symbols, and in the case of an Objective-C
compiled binary, references to classes are also eliminated.

11

B Code snippets

#import <mach-o/dyld.h>
uint32_t count = _dyld_image_count();
for(uint32_t i = 0; i < count; i++) {

const char *name = _dyld_get_image_name(i);
const void *header = _dyld_get_image_header(i);

}

Listing 2: Get a list of loaded libraries

foo@address:
0x00000000

foo@stub:
mov x8, [foo@address]
blx x8

main:
call foo@stub

(a)

foo@address:
0xAABBCCDD

foo@stub:
mov x8, [foo@address]
blx x8

main:
call foo@stub

(b)

Table 1: Assembly stubs: (a) Stub before dynamic symbol resolution and, (b) Stub after dynamic symbol resolution. foo@address
in (a) is uninitialized, while in (b) it is given a concrete address.

dyld_stub_binder:
0x11223344

foo@stub_helper:
mov x12, foo_bytecode_offset
mov x8, [dyld_stub_binder]
blx x8

foo@address:
foo@stub_helper

foo@stub:
mov x8, [foo@address]
blx x8

main:
call foo@stub

(a)

dyld_stub_binder:
0x11223344

foo@stub_helper:
mov x12, foo_bytecode_offset
mov x8, [dyld_stub_binder]
blx x8

foo@address:
0xAABBCCDD

foo@stub:
mov x8, [foo@address]
blx x8

main:
call foo@stub

(b)

Table 2: Lazy dynamic symbols resolution: (a) Stub before lazy dynamic symbol resolution and, (b) Stub after lazy dy-
namic symbol resolution. foo@address in (a) is initialized with a stub_helper while in (b) it is given a concrete address.
foo_bytecode_offset is template for the offset of foo symbol in the lazy bytecode chain.

12

adr x8, 0
movz x9, #0x9999
add x8, x8, x9
stp x30, x8, [sp], #-0x10
stp x3, x2, [sp], #-0x10
stp x1, x0, [sp], #-0x10
ldr x9, [x8]
blr x9
ldp x1, x0, [sp, #0x10]!
ldp x3, x2, [sp, #0x10]!
ldp x30, x8, [sp, #0x10]!
ldr x9, [x8, #8]
br x9

lea r8,[rip+0x0]
mov r9,0x4030201
add r8,r9
push rdi
push rsi
push rdx
push rcx
push r8
mov r9,QWORD PTR [r8]
call r9
pop r8
pop rcx
pop rdx
pop rsi
pop rdi
mov r9,QWORD PTR [r8+0x8]
jmp r9

Table 3: Shellcode inserted: ARM64 on the left; Intel 64 on the right. The second instruction of both versions is the offset from
the shellcode to the end of __DATA section. Making the pop on 2 words value of r8 (in Intel 64) or x8 (in ARM64) be the address
of the restore_objc and the main function.

struct ProgramVars {
void *mh; // mach_header or mach_header64
int *NXArgcPtr;
const char ***NXArgvPtr;
const char ***environPtr;
const char **__prognamePtr;

};
__attribute__((constructor)) static void
restoration(int argc, const char *const argv[], const char *const envp[],

const char *const apple[], const struct ProgramVars *vars) {
const void* main_binary_base = vars->mh;
// ...

}

Listing 3: Using ProgramVars struct

const uint32_t magic64 = 0xfeedfacf;
const uint32_t magic32 = 0xfeedface;
void *find_header(void *_func) {
const uint64_t page_size = 0x1000;
uint64_t func = (uint64_t)_func;
uint64_t start_searching = func + (0x1000 - (func % page_size));
uint32_t *x = (uint32_t *)(start_searching);
while (*x != magic64 && *x != magic32) {

x -= 0x1000 / 4;
}
return (void *)x;

}

Listing 4: Searching for Mach-O base address

13

C Figures

Figure 3: This figure illustrates the components of dyld and objc4 that are simulated by our loader.

Figure 4: This figure illustrates the modified binary at runtime and the execution flow. LC_MAIN is modified into the inserted
shellcode. During execution of the simulate loader, it writes the address of restore_objc and main function at the end of
__DATA section. The shellcode now acts as the new main for the binary is invoked by dyld and calls restore_objc and binary’s
main functions.

14

Figure 5: Disassembly (generated by Binary Ninja) comparison of the original file (left) and the obfuscated file (right). The
depicted file represents the main function of a standard iOS application created using XCode. The image clearly shows that the
obfuscated version has its symbols stripped away.

15

Figure 6: Disassembly (generated by Binary Ninja) comparison of the original file (left) and the obfuscated file (right). The
depicted file represents the main function of a Intel Mac macOS application. The image clearly shows that the obfuscated
version has its symbols stripped away.

16

Figure 7: Shellcode inserted for the iOS application in Figure 5.

Figure 8: Shellcode inserted for the macOS application in Figure 6.

17

	Introduction
	Background
	Apple's loader dyld
	Mach-O binary format
	Basic Mach-O structure
	Dynamic library load chain
	Dynamic Symbols
	Rebase
	Bytecode chain
	Fixups chains
	Export trie
	Fat binary

	Related Works
	Loader Simulation
	Design Overview
	Extracting information
	Simulate Loader
	Objective-C compiled binary
	Relationship with dyld
	Objective-C data in binary
	Simulation for Objective-C based binaries

	Obfuscation
	Removing redundant information

	Hooking
	C API hooking
	Objective-C class method hooking

	Evaluation
	Coreutils bench-mark
	iOS Viability
	Reversing and Rebuilding symbol tables
	Limitations

	Future Works
	Conclusions
	Obfuscate the simulated loader
	Manual dlsym
	Obfuscate the simulation library

	Code snippets
	Figures

